Novel function of Chat in controlling cell adhesion via Cas-Crk-C3G-pathway-mediated Rap1 activation.

نویسندگان

  • Akira Sakakibara
  • Yusuke Ohba
  • Kazuo Kurokawa
  • Michiyuki Matsuda
  • Seisuke Hattori
چکیده

Chat (Cas/HEF1-associated signal transducer) is a novel signaling molecule with an N-terminal SH2 domain and C-terminal Cas/HEF1 association domain that is implicated in the regulation of cell adhesion. The Cas/HEF1 association domain also shows sequence similarity with guanine nucleotide exchange factors for Ras family small GTPases. In this study, we found significant activation of Rap1 in Chat-overexpressing cells. Myr-Chat, a membrane-targeted form of Chat, activated Rap1 more efficiently. Interestingly, Chat and Cas synergistically activated Rap1. Certain Cas, Crk or C3G mutants suppressed Rap1 activation by Chat. We also confirmed the ternary complex formation consisting of Chat, Cas and Crk. Thus, it is likely that Chat-induced Rap1 activation was mediated by upregulation of the Cas-Crk-C3G signaling pathway rather than direct guanine nucleotide exchange factor activity of Chat. We further demonstrated that Myr-Chat expression induced cell periphery spreading and cell shape branching and that this activity also depended on the Cas-Crk-C3G pathway and Rap1 activity. Moreover, expression of Myr-Chat enhanced integrin-mediated cell adhesion. Taken together we propose a novel role for the Chat-Cas complex in controlling cell adhesion via the activation of Rap1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the Drosophila C3G leads to cell fate changes and overproliferation during development, mediated by the RAS-MAPK pathway and RAP1.

The cellular signal transduction pathways by which C3G, a RAS family guanine nucleotide exchange factor, mediates v-crk transformation are not well understood. Here we report the identification of Drosophila C3G, which, like its human cognate, specifically binds to CRK but not DRK/GRB2 adaptor molecules. During Drosophila development, constitutive membrane binding of C3G, which also occurs duri...

متن کامل

Focal adhesions require catalytic activity of Src family kinases to mediate integrin-matrix adhesion.

Members of the Src family of tyrosine kinases function to phosphorylate focal adhesion (FA) proteins. To explore the overlapping functions of Src kinases, we have targeted Csk, a negative regulator of the Src family, to FA structures. Expression of FA-targeted Csk (FA-Csk) effectively reduced the active form (nonphosphorylated at the C-terminal regulatory tyrosine) of Src members in the cell. W...

متن کامل

Induction of cell retraction by the combined actions of Abl–CrkII and Rho–ROCK1 signaling

Dynamic modulation of cell adhesion is integral to a wide range of biological processes. The small guanosine triphosphatase (GTPase) Rap1 is an important regulator of cell-cell and cell-matrix adhesions. We show here that induced expression of activated Abl tyrosine kinase reduces Rap1-GTP levels through phosphorylation of Tyr221 of CrkII, which disrupts interaction of CrkII with C3G, a guanine...

متن کامل

Rap1 is activated by erythropoietin or interleukin-3 and is involved in regulation of beta1 integrin-mediated hematopoietic cell adhesion.

The CrkL adaptor protein is involved in signaling from the receptor for erythropoietin (Epo) as well as interleukin (IL)-3 and activates beta(1) integrin-mediated hematopoietic cell adhesion through its interaction with C3G, a guanine nucleotide exchange factor for Rap1. We demonstrate here that Epo as well as IL-3 activates Rap1 in an IL-3-dependent hematopoietic cell line, 32D, expressing the...

متن کامل

Activation of a Dab1/CrkL/C3G/Rap1 Pathway in Reelin-Stimulated Neurons

During brain development, many neurons migrate long distances before settling and differentiating. These migrations are coordinated to ensure normal development. The secreted protein Reelin controls the locations of many types of neurons, and its absence causes the classic "Reeler" phenotype. Reelin action requires tyrosine phosphorylation of the intracellular protein Dab1 by Src-family kinases...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 115 Pt 24  شماره 

صفحات  -

تاریخ انتشار 2002